Abstract
For structures and load-bearing beams under extreme impact loading, the prediction of the transmitted peak impact force is the most challenging task. Available numerical and soft computing-based methods for finding peak impact force are not very accurate. Therefore, a simple and user-friendly predictive model is constructed from a database containing 126 impact force experiments of the simply supported RC beams. The proposed model is developed using gene expression programming (GEP) that includes the effect of the impact velocity and the impactor weight. Also identified are other influencing factors that have been overlooked in the existing soft computing models, such as concrete compressive strength, the shear span to depth ratio, and the tensile reinforcement quantity and strength. This allows the proposed model to overcome several inconsistencies and difficulties residing in the existing models. A statistical study has been conducted to examine the adequacy of the proposed model compared to existing models. Additionally, a numerical confirmation of the empirical model of the peak impact force is obtained by reference to 3D finite element simulation in ABAQUS. Finally, the proposed model is employed to predict the dynamic shear force and bending moment diagrams, thus rendering it ideal for practical application.
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献