Evaluation of Building Energy and Daylight Performance of Electrochromic Glazing for Optimal Control in Three Different Climate Zones

Author:

Oh Myunghwan,Jang Minsu,Moon Jaesik,Roh SeungjunORCID

Abstract

The objective of this paper is to analyze the control conditions of the transmittance rate, and determine the conditions that are most optimal with respect to building energy and daylight performance in three climate conditions: Riyadh, Saudi Arabia (hot climate); Inchon, South Korea (hot and cold climate); and Moscow, Russia (cold climate). The analysis was based on the electrochromic glass developed by a research team. Electrochromic glass is a next generation solar control glass that can control the transmittance of the glass itself. Therefore, proper control methods are essential for rational use of this electrochromic glass. To properly control electrochromic glass, daylight performance must be considered, along with building energy (heating, cooling, and lighting). If only building energy is considered, transmittance needs to be lowered during the summer season and increased during the winter season. Controlling electrochromic glass transmittance with such a method would not improve the satisfaction of users and occupants of a building due to the resulting glare. In addition to energy reduction, the basic function of solar control glass is to prevent glare. Therefore, in this study, we develop the Energy and Daylight Performance Index (EDPI) using, to evaluate the combined building energy and daylight performance and deduce the optimal control method for electrochromic glass. In addition, optimal control conditions for the three different climatic regions were obtained. Limitations of this study were that the scope was restricted to the eastern climate region, and that the building analysis model was limited to one climate region. It is expected that the optimal control method could be used as an initial database in the development of a electrochromic glass control system.

Funder

Ministry of Land, Transport and Maritime Affairs

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3