Detection of Image Level Forgery with Various Constraints Using DFDC Full and Sample Datasets

Author:

Lamichhane BarshaORCID,Thapa KeshavORCID,Yang Sung-Hyun

Abstract

The emergence of advanced machine learning or deep learning techniques such as autoencoders and generative adversarial networks, can generate images known as deepfakes, which astonishingly resemble the realistic images. These deepfake images are hard to distinguish from the real images and are being used unethically against famous personalities such as politicians, celebrities, and social workers. Hence, we propose a method to detect these deepfake images using a light weighted convolutional neural network (CNN). Our research is conducted with Deep Fake Detection Challenge (DFDC) full and sample datasets, where we compare the performance of our proposed model with various state-of-the-art pretrained models such as VGG-19, Xception and Inception-ResNet-v2. Furthermore, we perform the experiments with various resolutions maintaining 1:1 and 9:16 aspect ratios, which have not been explored for DFDC datasets by any other groups to date. Thus, the proposed model can flexibly accommodate various resolutions and aspect ratios, without being constrained to a specific resolution or aspect ratio for any type of image classification problem. While most of the reported research is limited to sample or preview DFDC datasets only, we have also attempted the testing on full DFDC datasets and presented the results. Contemplating the fact that the detailed results and resource analysis for various scenarios are provided in this research, the proposed deepfake detection method is anticipated to pave new avenues for deepfake detection research, that engages with DFDC datasets.

Funder

Ministry of Trade, Industry & Energy of the Republic of Korea

Kwangwoon University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference23 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3