Measurement of Gas-Oil Two-Phase Flow Patterns by Using CNN Algorithm Based on Dual ECT Sensors with Venturi Tube

Author:

Xu ZhuoqunORCID,Wu Fan,Yang Xinmeng,Li Yi

Abstract

In modern society, the oil industry has become the foundation of the world economy, and how to efficiently extract oil is a pressing problem. Among them, the accurate measurement of oil-gas two-phase parameters is one of the bottlenecks in oil extraction technology. It is found that through the experiment the flow patterns of the oil-gas two-phase flow will change after passing through the venturi tube with the same flow rates. Under the different oil-gas flow rate, the change will be diverse. Being motivated by the above experiments, we use the dual ECT sensors to collect the capacitance values before and after the venturi tube, respectively. Additionally, we use the linear projection algorithm (LBP) algorithm to reconstruct the image of flow patterns. This paper discusses the relationship between the change of flow patterns and the flow rates. Furthermore, a convolutional neural network (CNN) algorithm is proposed to predict the oil flow rate, gas flow rate, and GVF (gas void fraction, especially referring to sectional gas fraction) of the two-phase flow. We use ElasticNet regression as the loss function to effectively avoid possible overfitting problems. In actual experiments, we compare the Typical-ECT-imaging-based-GVF algorithm and SVM (Support Vector Machine) algorithm with CNN algorithm based on three different ECT datasets. Three different sets of ECT data are used to predict the gas flow rate, oil flow rate, and GVF, and they are respectively using the venturi front-based ECT data only, while using the venturi behind-based ECT data and using both these data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Sensitivity Map Deformation Method for Image Quality Improvement of Ultrasonic Tomography;IEEE Sensors Journal;2024-04-15

2. Harnessing Multiple Time-Series Sensor Data: Evaluating the Efficacy of Various Machine Learning Models in Predicting Gas-Water Two-Phase Flow;Proceeding of 9th Thermal and Fluids Engineering Conference (TFEC);2024

3. Measurement of Three-Phase Holdup Distribution in Gas–Liquid–Solid Fluidized Bed Based on ERT/TMR-EMT;Industrial & Engineering Chemistry Research;2023-08-23

4. Real-time Monitoring of Two-phase Flow Using Electrical Impedance Tomography with Convolutional Neural Network;2023 IEEE International Conference on Real-time Computing and Robotics (RCAR);2023-07-17

5. Flow Velocity Computation in Solid-liquid Two-phase Flow by Convolutional Neural Network;2023 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2023-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3