Conceptual Design of IoT-Based AMR Systems Based on IEC 61850 Microgrid Communication Configuration Using Open-Source Hardware/Software IED

Author:

Mlakić DraganORCID,Baghaee HamidORCID,Nikolovski SreteORCID,Vukobratović MarkoORCID,Balkić ZoranORCID

Abstract

This paper presents an intelligent electronic device (IED) utilized for automatic meter readings (AMR) scheme using “Open-Source” software. This IED is utilized to measure a low-voltage intelligent electronic device) system with a boundless number of sensors, and it is accessible on the Internet of Things (IoT). The utilized equipment for this task is Arduino UNO R3 motherboard and fringe sensors, which are used for measurement of the referenced information. The Arduino motherboard is used not only for sole tranquility of equipment but also for serving as wireless fidelity (Wi-Fi) switch for the sensors. The personal computer is utilized to gather information and perform client-side calculations. The server works based on an open-source program written in Java programming language. The underlying objective of the proposed scheme is to make the meter based on the “Do It Yourself” methodology which requires considerably fewer funds. Also, it is conceivable by keeping easy to understand interface, information legitimacy, precision of measured information and convenience for the conclusive client. The information is measured in just about 1 ms which is superb for custom-designed IED. Furthermore, the measured qualities are calculated based on their RMS values to be used for analyzing and further presentation of data.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. Electric Power Distribution Reliability;Brown,2009

2. Communication Networks for Smart Grids;Budka,2014

3. Demand response and smart grids—A survey

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Intelligent Verification System of High Voltage Electric Energy Metering Device Based on Power Cloud;Electronics;2023-06-01

2. A New Fast Bus Tripping System Design of Protection Relay in an AC Power Network;2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET);2023-05-19

3. An IoT Controlled Smart Grid System for Theft Detection and Remote Power Redirection;2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG);2023-04-05

4. Quality of service assessment routing protocols for performance in a smart building: A case study;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2022-07-31

5. Strategic Investment in Open Hardware for National Security;Technologies;2022-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3