Optimum Organic Rankine Cycle Design for the Application in a CHP Unit Feeding a District Heating Network

Author:

Branchini Lisa,De Pascale AndreaORCID,Melino Francesco,Torricelli Noemi

Abstract

Improvement of energy conversion efficiency in prime movers has become of fundamental importance in order to respect EU 2020 targets. In this context, hybrid power plants comprising combined heat and power (CHP) prime movers integrated with the organic Rankine cycle (ORC) create interesting opportunities to additionally increase the first law efficiency and flexibility of the system. The possibility of adding supplementary electric energy production to a CHP system, by converting the prime movers’ exhaust heat with an ORC, was investigated. The inclusion of the ORC allowed operating the prime movers at full-load (thus at their maximum efficiency), regardless of the heat demand, without dissipating not required high enthalpy-heat. Indeed, discharged heat was recovered by the ORC to produce additional electric power at high efficiency. The CHP plant in its original arrangement (comprising three internal combustion engines of 8.5 MW size each) was compared to a new one, involving an ORC, assuming three different layout configurations and thus different ORC off-design working conditions at user thermal part-load operation. Results showed that the performance of the ORC, on the year basis, strongly depended on its part-load behavior and on its regulation limits. Indeed, the layout that allowed to produce the maximum amount of ORC electric energy per year (about 10 GWh/year) was the one that could operate for the greatest number of hours during the year, which was different from the one that exhibited the highest ORC design power. However, energetic analysis demonstrated that all the proposed solutions granted to reduce the global primary energy consumption of about 18%, and they all proved to be a good investment since they allowed to return on the investment in barely 5 years, by selling the electric energy at a minimum price equal to 70 EUR/MWh.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3