Finite Element Analysis of the Breakdown Prediction for LDPE Stressed by Various Ramp Rates of DC Voltage Based on Molecular Displacement Model

Author:

Kim MinheeORCID,Kim Su-Hun,Lee Se-Hee

Abstract

Predicting the electrical breakdown of polymers is critical for certifying the endurance and lifetime of high voltage power equipment. Since various factors contribute nonlinearly to the breakdown phenomena of polymer insulators, it is difficult to assess the impact of each factor independently. In this study, we numerically analyzed the breakdown phenomenon because of the ramp rate of the DC voltage applied to a polymer insulator, low-density polyethylene (LDPE), using the finite element method (FEM). To predict the breakdown initiation, we analyzed the relaxation time of the conduction current through the insulator as a significant indicator. The bipolar charge transport (BCT) model was used to analyze the charge behavior within the LDPE, and the breakdown voltage was predicted by incorporating the molecular displacement model. This analysis was conducted for a wide range of ramp rates from 10 to 1500 V/s. The current density was calculated using two different methods, namely the energy and average methods, and the results were compared with each other. The results of the numerical model were further verified by comparing with those from experiments reported in the literature.

Funder

Korea Electric Power Corporation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3