Author:
Zhang Peng,Chen Xiangsu,Fan Chaohai
Abstract
At present, the number of oil and gas gathering and transportation pipelines is numerous, and leakage accidents occur frequently. Each year, due to pipeline failure, there are immeasurable consequences for people and the environment around the affected pipelines. In order to reduce the risk of leakage accidents in heavy oil gathering pipelines and prevent the occurrence of major spills, it is of great significance to carry out safety assessments of them. However, failure data of these pipelines is seriously deficient and statistical methods used to evaluate pipeline safety are incompatible. Therefore, this paper proposes a risk assessment system for heavy oil gathering pipelines in the absence of failure data. Firstly, a Bayesian network (BN) for the leak safety evaluation of heavy oil gathering pipelines is established via mapping from a bow-tie (BT) model. Then, information diffusion theory is combined with fuzzy set theory to obtain the failure probability of each factor affecting the pipeline failure, and then the failure probability of the pipeline is obtained by the full probability formula. In addition, in order to assess the extent of consequences due to accidents, variable fuzzy set theory is used to comprehensively consider the consequences of the leakage of heavy oil gathering pipelines. Finally, the above two parts are combined to form a safety assessment system to realize risk management and control for pipelines, which is necessary to ensure the safety of heavy oil gathering pipelines.
Funder
National Natural Science Foundation of China
Doctoral Program of Higher Education of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献