A Self-Learning Detection Method of Sybil Attack Based on LSTM for Electric Vehicles

Author:

Zhang Yi-Ying,Shang JingORCID,Chen Xi,Liang Kun

Abstract

Electric vehicles (EVs) are the development direction of new energy vehicles in the future. As an important part of the Internet of things (IOT) communication network, the charging pile is also facing severe challenges in information security. At present, most detection methods need a lot of prophetic data and too much human intervention, so they cannot do anything about unknown attacks. In this paper, a self-learning-based attack detection method is proposed, which makes training and prediction a closed-loop system according to a large number of false information packets broadcast to the communication network. Using long short-term memory (LSTM) neural network training to obtain the characteristics of traffic data changes in the time dimension, the unknown malicious behavior characteristics are self-extracted and self-learning, improving the detection efficiency and quality. In this paper, we take the Sybil attack in the car network as an example. The simulation results show that the proposed method can detect the Sybil early attack quickly and accurately.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3