Abstract
The supply of pulsed power loads is considered a key driver for the integration of energy storage systems (ESSs) with warship power systems. ESSs are identified as a means to offer fast response dynamics capable of driving pulsed loads for sustained periods. This paper contributes a novel investigation into the performance of a Nickel Manganese Cobalt based lithium-ion battery system to supply laser directed energy weapon (LDEW) loads for future warship combat power systems using time-domain simulation methodology. The approach describes a second order Thévenin equivalent circuit battery model validated against a battery module of a type used in commercial marine ESS. The ability of the battery system to power LDEW loads peaking at 2 MW for up to periods of four minutes were simulated for beginning of life (BoL) and degraded conditions. The repeatability of the pulsed power supply with ESS is also reported. Simulation results show that Quality of Power Supply (QPS) is maintained within acceptable transient tolerance using a feed-forward control circuit that controls the DC-DC converter interface between the battery system and the LDEW load. The results of the study demonstrate the battery system operating envelope for the LDEW under investigation.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference32 articles.
1. Informing the power system performance envelope for pulse load operation;Mills,2018
2. Navy Shipboard Lasers for Surface, Air, and Missile Defense: Background and Issues for Congresshttps://fas.org/sgp/crs/weapons/R41526.pdf
3. History and the Status of Electric Ship Propulsion, Integrated Power Systems, and Future Trends in the U.S. Navy
4. Integrated Power Systems—An Outline of Requirements and Functionalities for Ships
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献