Investigating the Performance Capability of a Lithium-ion Battery System When Powering Future Pulsed Loads

Author:

Farrier LukeORCID,Bucknall Richard

Abstract

The supply of pulsed power loads is considered a key driver for the integration of energy storage systems (ESSs) with warship power systems. ESSs are identified as a means to offer fast response dynamics capable of driving pulsed loads for sustained periods. This paper contributes a novel investigation into the performance of a Nickel Manganese Cobalt based lithium-ion battery system to supply laser directed energy weapon (LDEW) loads for future warship combat power systems using time-domain simulation methodology. The approach describes a second order Thévenin equivalent circuit battery model validated against a battery module of a type used in commercial marine ESS. The ability of the battery system to power LDEW loads peaking at 2 MW for up to periods of four minutes were simulated for beginning of life (BoL) and degraded conditions. The repeatability of the pulsed power supply with ESS is also reported. Simulation results show that Quality of Power Supply (QPS) is maintained within acceptable transient tolerance using a feed-forward control circuit that controls the DC-DC converter interface between the battery system and the LDEW load. The results of the study demonstrate the battery system operating envelope for the LDEW under investigation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference32 articles.

1. Informing the power system performance envelope for pulse load operation;Mills,2018

2. Navy Shipboard Lasers for Surface, Air, and Missile Defense: Background and Issues for Congresshttps://fas.org/sgp/crs/weapons/R41526.pdf

3. History and the Status of Electric Ship Propulsion, Integrated Power Systems, and Future Trends in the U.S. Navy

4. Integrated Power Systems—An Outline of Requirements and Functionalities for Ships

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3