Determination of NMR T2 Cutoff and CT Scanning for Pore Structure Evaluation in Mixed Siliciclastic–Carbonate Rocks before and after Acidification

Author:

Wang MengqiORCID,Xie Jun,Guo Fajun,Zhou Yawei,Yang Xudong,Meng Ziang

Abstract

Nuclear magnetic resonance (NMR) is used widely to characterize petrophysical properties of siliciclastic and carbonate rocks but rarely to study those of mixed siliciclastic–carbonate rocks. In this study, 13 different core samples and eight acidified core samples selected amongst those 13 from the Paleogene Shahejie Formation in Southern Laizhouwan Sag, Bohai Bay Basin, were tested by scanning electron microscopy (SEM), micro-nano-computed tomography (CT), and NMR. SEM and CT results revealed a complex pore structure diversity, pore distribution, and pore-throat connectivity in mixed reservoirs. Sixteen groups of NMR experiments addressed changes in these properties and permeabilities of mixed siliciclastic–carbonate rocks before and after acidification to determine its effects on such reservoirs. NMR experimental results showed no “diffusion coupling” effect in mixed siliciclastic–carbonate rocks. Distributions of NMR T2 cutoff values (T2C) are closely related to the pore structure and lithologic characteristics before and after acidification. The T2C index separates irreducible and movable fluids in porous rocks and is a key factor in permeability prediction. Centrifugation experiments showed that, before acidification, the T2C of mixed siliciclastic–carbonate rocks with 60–90% siliciclastic content (MSR) ranged widely from 1.5 to 9.8 ms; the T2C of mixed siliciclastic–carbonate rocks with 60–90% carbonate content (MCR) ranged from 1.8 to 5.6 ms. After acidification, the T2C of MSR ranged widely from 2.6 to 11.6 ms, the T2C of MCR ranged from 1.5 to 5.6 ms, and no significant difference was observed between MCR reservoirs. Based on an analysis of the morphology of NMR T2 spectra, we propose a new T2 cutoff value prediction method for mixed siliciclastic–carbonate rocks based on a normal distribution function to predict various T2C values from morphological differences in NMR T2 spectra and to calculate the irreducible water saturation (Swir), i.e., the ratio of irreducible total fluid volume to effective porosity. The reliability of the proposed method is verified by comparing predicted T2C and Swir values with those from NMR experimental results. New experiments and modeling demonstrate the applicability of NMR for the petrophysical characterization of mixed siliciclastic–carbonate rock reservoirs. Our results have potential applications for identification and evaluation of mixed siliciclastic–carbonate rock reservoirs using NMR logging.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3