Assemblies of Coaxial Pick-Up Coils as Generic Inductive Sensors of Magnetic Flux: Mathematical Modeling of Zero, First and Second Derivative Configurations

Author:

Moraitis Petros1,Stamopoulos Dimosthenis1

Affiliation:

1. Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece

Abstract

Coils are one of the basic elements employed in devices. They are versatile, in terms of both design and manufacturing, according to the desired inductive specifications. An important characteristic of coils is their bidirectional action; they can both produce and sense magnetic fields. Referring to sensing, coils have the unique property to inductively translate the temporal variation of magnetic flux into an AC voltage signal. Due to this property, they are massively used in many areas of science and engineering; among other disciplines, coils are employed in physics/materials science, geophysics, industry, aerospace and healthcare. Here, we present detailed and exact mathematical modeling of the sensing ability of the three most basic scalar assemblies of coaxial pick-up coils (PUCs): in the so-called zero derivative configuration (ZDC), having a single PUC; the first derivative configuration (FDC), having two PUCs; and second derivative configuration (SDC), having four PUCs. These three basic assemblies are mathematically modeled for a reference case of physics; we tackle the AC voltage signal, VAC (t), induced at the output of the PUCs by the temporal variation of the magnetic flux, Φ(t), originating from the time-varying moment, m(t), of an ideal magnetic dipole. Detailed and exact mathematical modeling, with only minor assumptions/approximations, enabled us to obtain the so-called sensing function, FSF, for all three cases: ZDC, FDC and SDC. By definition, the sensing function, FSF, quantifies the ability of an assembly of PUCs to translate the time-varying moment, m(t), into an AC signal, VAC (t). Importantly, the FSF is obtained in a closed-form expression for all three cases, ZDC, FDC and SDC, that depends on the realistic, macroscopic characteristics of each PUC (i.e., number of turns, length, inner and outer radius) and of the entire assembly in general (i.e., relative position of PUCs). The mathematical methodology presented here is complete and flexible so that it can be easily utilized in many disciplines of science and engineering.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3