Abstract
By employing a specific particle interaction theory and a high-precision equation of states for the liquid and vapor phases of H2, respectively, a new H2 solubility model in pure water and aqueous NaCl solutions is proposed in this study. The model established by fitting the experimental data of H2 solubility can be used to estimate H2 solubility in pure water at temperatures and pressures of 273.15–423.15 K and 0–1100 bar, respectively, and in salt solutions (NaCl concentration = 0–5 mol/kg) at temperatures and pressures of 273.15–373.15 K and 0–230 bar, respectively. By adopting the theory of liquid electrolyte solutions, the model can also be used to predict H2 solubility in seawater without fitting the experimental data of a seawater system. Within or close to experimental data uncertainty, the mean absolute percentage error between the model-predicted and experimentally obtained H2 solubilities was less than 1.14%.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference55 articles.
1. The Future of Hydrogen,2019
2. Energy and Resources
3. Solutions, Minerals and Equilibria. New York;Garrels;Mineral. Mag.,1966
4. Underground Hydrogen Storage. Final Report. [Salt Caverns, Excavated Caverns, Aquifers and Depleted Fields],1979
5. Physical, chemical and energy aspects of underground hydrogen storage
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献