Abstract
A remodeled sperm swarm optimization (RMSSO) algorithm for a home energy management (HEM) system is proposed, and its real-time efficacy was evaluated using a hardware experimental model. This home environment comprised sixteen residential loads, a smart meter and a Raspberry Pi controller to optimize the energy consumption cost (ECC) in response to the Indian day-ahead pricing (DAP) scheme. A wired/wireless communication network was considered to communicate with the smart meter and controller. To address this optimization problem, the sperm swarm optimization (SSO) algorithm’s constriction coefficient was remodeled to improve its global searching capability and proposed as RMSSO. For the first time, salp swarm optimization (SSA), SSO, and RMSSO algorithms were employed to schedule home appliances in the Indian scenario. To validate the proposed technique’s outcome, the results were compared to those of the conventional SSO and SSA algorithms. This problem was solved using the Python/GUROBI optimizer tool. As a consequence, consumers can use this control strategy in real-time to reduce energy consumption costs.
Funder
Vellore Institute of Technology University
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference54 articles.
1. Estimation of solar photovoltaic parameters using pattern search algorithm;Derick,2016
2. Real-Time Energy Management for Smart Homes
3. Energy Management in Electrical Smart Grid Environment Using Robust Optimization Algorithm
4. A Survey on Smart Grid Communication Infrastructures: Motivations, Requirements and Challenges
5. A hardware algorithm for PAR reduction in smart home;Amer;Proceedings of the 2014 International Conference on Applied and Theoretical Electricity (ICATE),2014
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献