A Balancing Method for Multi-Disc Flexible Rotors without Trial Weights

Author:

Sun XunORCID,Chen Yue,Cui Jiwen

Abstract

Rotor dynamic balancing is a classical problem. Traditional balancing methods such as the influence coefficient method and the modal balancing method, have low balancing efficiency because they need to run many times to add trial weights. Although the model-based balancing method improves the balancing efficiency, it cannot accurately identify the position, amplitude and phase of each unbalance fault for rotors with multi-disc structures, so it is difficult to apply it to actual balancing. To solve the above problems, based on the traditional modal balancing theory, this paper deduces that the continuous and isolated unbalance in the rotor-bearing system can be represented by isolated unbalance on several balancing planes approximately. The model-based method is used to identify the above-mentioned equivalent isolated unbalances, and then the corrected mass is added to the balancing planes so as to complete the balance of multiple flexible rotor without trial weights. Considering the practical situation, the proposed balancing method includes two steps: low-speed balancing and high-speed balancing. The proposed balancing method is verified using three and four-disc rotors. The simulation results show that the balancing method can effectively reduce the vibration of the flexible rotor after low-speed and high-speed balancing, and the amplitude at the measurement point is reduced by 79.74~97.60%, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Balancing multiple speeds flexible rotors without trial weights using multi-objective optimization;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-07-05

2. The dynamic analysis of additional blade stage to steam turbine rotor design;AIP Conference Proceedings;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3