Impact of Active Diesel Particulate Filter Regeneration on Carbon Dioxide, Nitrogen Oxides and Particle Number Emissions from Euro 5 and 6 Vehicles under Laboratory Testing and Real-World Driving

Author:

Dimaratos AthanasiosORCID,Giechaskiel Barouch,Clairotte MichaëlORCID,Fontaras GeorgiosORCID

Abstract

Particulate mass concentration is a crucial parameter for characterising air quality. The diesel particulate filter (DPF) is the primary technology used to limit vehicle particle emissions, but it needs periodic cleaning, a process called regeneration. This study aims to assess the impact of active DPF regeneration on the performance and emissions of Euro 5 and 6 vehicles. The study examined both carbon dioxide (CO2) and pollutant (nitrogen oxides (NOx) and particle number (PN)) emissions for eight vehicles tested in the laboratory and on the road. Apart from the DPF, a wide range of emission control systems was covered in this experimental campaign, including exhaust gas recirculation (EGR), diesel oxidation catalyst (DOC), lean NOx trap (LNT) and selective catalytic reduction (SCR) catalyst, revealing the different impacts on NOx emissions. The regeneration frequency and duration were also determined and used to calculate the Ki factor, which accounts for the emissions with and without regeneration, weighted over the distance driven between two consecutive regeneration events. Based on these outcomes, representative emission factors (EF) were proposed for the regeneration phase only and the complete regeneration interval. In addition, the effect of regeneration on efficiency was estimated and compared with other energy consumers. The results indicated a significant impact of DPF regeneration on CO2, NOx and PN emissions, higher in the case of driving cycle testing in the laboratory. The relevant mechanisms behind the elevated emission levels were analysed, focusing on the regeneration period and the test phase following immediately after. The calculation of the Ki factor and the comparison with the official values revealed some weaknesses in its application in real-world conditions; to overcome these, new NOx EF values were calculated, depending on the emission control system. It was revealed that Euro 6 vehicles equipped with SCR could comply with the applicable limits when considering the complete regeneration interval. Finally, it was indicated that the DPF regeneration impact on vehicle efficiency is similar to that of driving with the air conditioning (A/C) system and headlights on.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3