Optimal Planning of Electric Vehicle Charging Stations Considering User Satisfaction and Charging Convenience

Author:

Xu Di,Pei Wenhui,Zhang QiORCID

Abstract

To solve the problem of layout design of charging stations in the early stage of the electric vehicle industry, the user’s satisfaction and the charging convenience are considered. An electric vehicle charging station site-selection model is established based on the kernel density analysis of the urban population. The goal of this model is maximum electric vehicle user satisfaction and the highest charging convenience. Then, according to model characteristics, the immune algorithm is designed and optimized to solve the model. The optimization of the immune algorithm includes two aspects. On the one aspect, judging that the stop condition is added in the mutation link. On the other aspect, two mutation operators are designed in the optimized immune algorithm. Finally, the simulation example is determined by a three-step method in Jinan City. The results show that the electric vehicle charging station site-selection model in this paper can better meet user needs compared with traditional models. Compared with the traditional immune algorithm, the convergence speed of the optimized immune algorithm is improved, and the proposed algorithm is superior to the traditional immune algorithm in terms of stability and accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference40 articles.

1. Optimization method for charging station location and capacity considering the spatiotemporal distribution of electric vehicles;Yan;Chin. J. Electr. Eng.,2021

2. Research and application of electric vehicle fast charging station site selection and capacity;Yu;Master Thesis,2019

3. Development of a Bayesian network model for optimal site selection of electric vehicle charging station

4. Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective

5. Location of electric vehicle charging stations: A perspective using the grey decision-making model

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3