Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement

Author:

Gumbarević SanjinORCID,Milovanović BojanORCID,Dalbelo Bašić BojanaORCID,Gaši MergimORCID

Abstract

Transmission losses through the building envelope account for a large proportion of building energy balance. One of the most important parameters for determining transmission losses is thermal transmittance. Although thermal transmittance does not take into account dynamic parameters, it is traditionally the most commonly used estimation of transmission losses due to its simplicity and efficiency. It is challenging to estimate the thermal transmittance of an existing building element because thermal properties are commonly unknown or not all the layers that make up the element can be found due to technical-drawing information loss. In such cases, experimental methods are essential, the most common of which is the heat-flux method (HFM). One of the main drawbacks of the HFM is the long measurement duration. This research presents the application of deep learning on HFM results by applying long-short term memory units on temperature difference and measured heat flux. This deep-learning regression problem predicts heat flux after the applied model is properly trained on temperature-difference input, which is backpropagated by measured heat flux. The paper shows the performance of the developed procedure on real-size walls under the simulated environmental conditions, while the possibility of practical application is shown in pilot in-situ measurements.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference64 articles.

1. A Clean Planet for All—A European Strategic Long-Term Vision for A Prosperous, Modern, Competitive and Climate Neutral Economy;Commission,2018

2. State of the Building Stock Briefing,2017

3. 10 questions concerning sustainable building renovation

4. New qualitative approach based on data analysis of European building stock and retrofit market

5. A review of bottom-up building stock models for energy consumption in the residential sector

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3