Pyrolysis of Chromated Copper Arsenate-Treated Wood: Investigation of Temperature, Granulometry, Biochar Yield, and Metal Pathways

Author:

Gmar Mouna,Bouafif HassineORCID,Bouslimi Besma,Braghiroli Flavia L.,Koubaa AhmedORCID

Abstract

Chromated copper arsenate-treated (cca) wood disposal faces environmental restrictions due to its toxicity, heavy metal leaching in storage sites, and greenhouse gas emissions during incineration. Thus, finding new management methods for this contaminated wood at the end of life is crucial. This study evaluated the effect of pyrolysis temperature (300, 400, and 500 °C), particle size, biochar yield, and the behavior of arsenic (As), chromium (Cr), and copper (Cu) during treated-wood pyrolysis. The highest biochar yield was obtained at 300 °C for fine particles. The biochar retention of heavy metals decreased with increasing pyrolysis temperature. At 300 °C, the highest biochar As, Cr, and Cu retentions were 76, 91, and 83%. At 500 °C, biochar only retained 43% of the As. Additionally, heavy metal leaching from the biochar exceeded the Environmental Protection Agency’s (EPA) maximum concentration limit of 5 mg/L. High-density polyethylene encapsulation of contaminated biochar reduced the leaching of As, Cr, and Cu by 96, 95, and 91%, respectively. Thus, combining pyrolysis and plastic encapsulation to produce a composite material could be a solution for reducing waste (conversion of CCA-wood into biochar) and for the safe disposal of contaminated wood.

Funder

Natural Sciences and Engineering Research Council

Mitacs

Quebec Consortium for Industrial Bioprocess Research and Innovation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference58 articles.

1. Preservative-Treated Wood and Alternative Products in the Forest Service;Groenier,2006

2. Canadian Wood Council Durability by Treatment https://cwc.ca/why-build-with-wood/durability/durability-by-treatment/

3. Disposal practices and management alternatives for CCA-treated wood waste

4. A pilot study of children's exposure to CCA-treated wood from playground equipment

5. Heavy Duty Wood Preservatives: Creosote, Pentachlorophenol, Chromated Copper Arsenate (CCA) and Ammoniacal Copper Zinc Arsenate (ACZA),2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3