Abstract
With a small number of training range cells, sparse recovery (SR)-based space–time adaptive processing (STAP) methods can help to suppress clutter and detect targets effectively for airborne radar. However, SR algorithms usually have problems of high computational complexity and parameter-setting difficulties. More importantly, non-ideal factors in practice will lead to the degraded clutter suppression performance of SR-STAP methods. Based on the idea of deep unfolding (DU), a space–time two-dimensional (2D)-decoupled SR network, namely 2DMA-Net, is constructed in this paper to achieve a fast clutter spectrum estimation without complicated parameter tuning. For 2DMA-Net, without using labeled data, a self-supervised training method based on raw radar data is implemented. Then, to filter out the interferences caused by non-ideal factors, a cycle-consistent adversarial network (CycleGAN) is used as the image enhancement process for the clutter spectrum obtained using 2DMA-Net. For CycleGAN, an unsupervised training method based on unpaired data is implemented. Finally, 2DMA-Net and CycleGAN are cascaded to achieve a fast and accurate estimation of the clutter spectrum, resulting in the DU-CG-STAP method with unsupervised learning, as demonstrated in this paper. The simulation results show that, compared to existing typical SR-STAP methods, the proposed method can simultaneously improve clutter suppression performance and reduce computational complexity.
Funder
National Natural Science Foundation of China
Young Talent fund of University Association for Science and Technology in Shaanxi
Subject
General Earth and Planetary Sciences
Reference35 articles.
1. Space-Time Adaptive Processing for Radar;Guerci,2014
2. Theory of Adaptive Radar
3. Rapid Convergence Rate in Adaptive Arrays
4. A STAP overview
5. Enhancing GMTI performance in non-stationary clutter using 3D STAP;Corbell;Proceedings of the IEEE Radar Conference,2007
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献