DU-CG-STAP Method Based on Sparse Recovery and Unsupervised Learning for Airborne Radar Clutter Suppression

Author:

Zou Bo,Wang Xin,Feng WeikeORCID,Zhu Hangui,Lu Fuyu

Abstract

With a small number of training range cells, sparse recovery (SR)-based space–time adaptive processing (STAP) methods can help to suppress clutter and detect targets effectively for airborne radar. However, SR algorithms usually have problems of high computational complexity and parameter-setting difficulties. More importantly, non-ideal factors in practice will lead to the degraded clutter suppression performance of SR-STAP methods. Based on the idea of deep unfolding (DU), a space–time two-dimensional (2D)-decoupled SR network, namely 2DMA-Net, is constructed in this paper to achieve a fast clutter spectrum estimation without complicated parameter tuning. For 2DMA-Net, without using labeled data, a self-supervised training method based on raw radar data is implemented. Then, to filter out the interferences caused by non-ideal factors, a cycle-consistent adversarial network (CycleGAN) is used as the image enhancement process for the clutter spectrum obtained using 2DMA-Net. For CycleGAN, an unsupervised training method based on unpaired data is implemented. Finally, 2DMA-Net and CycleGAN are cascaded to achieve a fast and accurate estimation of the clutter spectrum, resulting in the DU-CG-STAP method with unsupervised learning, as demonstrated in this paper. The simulation results show that, compared to existing typical SR-STAP methods, the proposed method can simultaneously improve clutter suppression performance and reduce computational complexity.

Funder

National Natural Science Foundation of China

Young Talent fund of University Association for Science and Technology in Shaanxi

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference35 articles.

1. Space-Time Adaptive Processing for Radar;Guerci,2014

2. Theory of Adaptive Radar

3. Rapid Convergence Rate in Adaptive Arrays

4. A STAP overview

5. Enhancing GMTI performance in non-stationary clutter using 3D STAP;Corbell;Proceedings of the IEEE Radar Conference,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3