Mapping Asbestos-Cement Corrugated Roofing Tiles with Imagery Cube via Machine Learning in Taiwan

Author:

Yu Teng-To,Lin Yen-ChunORCID,Lan Shyh-Chin,Yang Yu-En,Wu Pei-Yun,Lin Jo-Chi

Abstract

Locating and calculating the number of asbestos-cement corrugated roofing tiles is the first step in the demolition process. In this work, archived image cubes of Taiwan served as the fundamental data source used via machine learning approach to identify the existence of asbestos-cement corrugated roofing tiles with more than 85% accuracy. An adequate quantity of ground-truth data covering all the types of roofs via aerial hyperspectral scan was the key to success for this study. Twenty randomly picked samples from the ground-truth group were examined by X-ray refraction detection to ensure correct identification of asbestos-cement corrugated roofing tiles with remote sensing. To improve the classifying accuracy ratio, two different machine learning algorithms were applied to gather the target layers individually using the same universal training model established from 400 ground-truth samples. The agreement portions within the overlapping layers of these two approaches were labeled as the potential targets, and the pixel growth technique was performed to detect the roofing boundary and create the polygon layer with size information. Exacting images from aerial photos within the chosen polygon were compared to up-to-date Sentinel-1 images to find the temporal disagreements and remove the mismatched buildings, identified as non-asbestos roofs, from the database to reflect the actual condition of present data. This automatic matching could be easily performed by machine learning to resolve the information lag while using archived data, which is an essential issue when detecting targets with non-simultaneous acquired images over a large area. To meet the 85% kappa accuracy requirement, the recurring processes were applied to find the optimal parameters of the machine learning model. Meanwhile, this study found that the support vector machine method was easier to handle, and the convolution neuro network method offered better accuracy in automatic classification with a universal training model for vast areas. This work demonstrated a feasible approach using low-cost and low-resolution archived images to automatically detect the existence of asbestos-cement corrugated roofing tiles over large regions. The entire work was completed within 16 months for an area of 36,000 km2, and the detected number of asbestos-cement corrugated roofing tiles was more than three times the initial estimation by statistics method from two small-area field surveys.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3