Accuracy Evaluation and Analysis of GNSS Tropospheric Delay Inversion from Meteorological Reanalysis Data

Author:

Liu Guolin,Huang Guanwen,Xu Ying,Ta Liangyu,Jing CeORCID,Cao Yu,Wang Ziwei

Abstract

Accurate estimation of tropospheric delay is significant for global navigation satellite system’s (GNSS) high-precision navigation and positioning. However, due to the random and contingent changes in weather conditions and water vapor factors, the classical tropospheric delay model cannot accurately reflect changes in tropospheric delay. In recent years, with the development of meteorological observation/detection and numerical weather prediction (NWP) technology, the accuracy and resolution of meteorological reanalysis data have been effectively improved, providing a new solution for the inversion and modeling of regional or global tropospheric delays. Here, we evaluate the consistency and accuracy of three different types of reanalysis data (i.e., ERA5, MERRA2, and CRA40) used to invert the zenith tropospheric delay (ZTD) from 436 international GNSS service (IGS) stations in 2020, based on the integral method. The results show that the ZTD inversion of the three types of reanalysis data was consistent with the IGS ZTD, even in heavy rain conditions. Furthermore, the average precision of the ZTD inversion of the ERA5 reanalysis data was higher, where the mean deviation (bias), mean absolute error (MAE), and root mean square (RMS) were –3.39, 9.69, and 12.55 mm, respectively. The ZTD average precisions of the MERRA2 and CRA40 inversions were comparable, showing slightly worse performance than the ERA5. In addition, we further analyzed the global distribution characteristics of the ZTD errors inverted from the reanalysis data. The results show that ZTD errors inverted from the reanalysis data were highly correlated with station latitude and climate type, and they were mainly concentrated in the tropical climate zone at low latitudes. Compared to dividing error areas by latitude, dividing error areas by climatic category could better reflect the global distribution of errors and would also provide a data reference for the establishment of tropospheric delay models considering climate type.

Funder

Programs of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3