Creating a Detailed Wetland Inventory with Sentinel-2 Time-Series Data and Google Earth Engine in the Prairie Pothole Region of Canada

Author:

DeLancey Evan R.,Czekajlo AgathaORCID,Boychuk Lyle,Gregory Fiona,Amani MeisamORCID,Brisco BrianORCID,Kariyeva JahanORCID,Hird Jennifer N.ORCID

Abstract

Wetlands in the Prairie Pothole Region (PPR) of Canada and the United States represent a unique mapping challenge. They are dynamic both seasonally and year-to-year, are very small, and frequently altered by human activity. Many efforts have been made to estimate the loss of these important habitats but a high-quality inventory of pothole wetlands is needed for data-driven conservation and management of these resources. Typical landcover classifications using one or two image dates from optical or Synthetic Aperture Radar (SAR) Earth Observation (EO) systems often produce reasonable wetland inventories for less dynamic, forested landscapes, but will miss many of the temporary and seasonal wetlands in the PPR. Past studies have attempted to capture PPR wetland dynamics by using dense image stacks of optical or SAR data. We build upon previous work, using 2017–2020 Sentinel-2 imagery processed through the Google Earth Engine (GEE) cloud computing platform to capture seasonal flooding dynamics of wetlands in a prairie pothole wetland landscape in Alberta, Canada. Using 36 different image dates, wetland flood frequency (hydroperiod) was calculated by classifying water/flooding in each image date. This product along with the Global Ecosystem Dynamics Investigation (GEDI) Canopy Height Model (CHM) was then used to generate a seven-class wetland inventory with wetlands classified as areas with seasonal but not permanent water/flooding. Overall accuracies of the resulting inventory were between 95% and 96% based on comparisons with local photo-interpreted inventories at the Canadian Wetland Classification System class level, while wetlands themselves were classified with approximately 70% accuracy. The high overall accuracy is due, in part, to a dominance of uplands in the PPR. This relatively simple method of classifying water through time generates reliable wetland maps but is only applicable to ecosystems with open/non-complex wetland types and may be highly sensitive to the timing of cloud-free optical imagery that captures peak wetland flooding (usually post snow melt). Based on this work, we suggest that expensive field or photo-interpretation training data may not be needed to map wetlands in the PPR as self-labeling of flooded and non-flooded areas in a few Sentinel-2 images is sufficient to classify water through time. Our approach demonstrates a framework for the operational mapping of small, dynamic PPR wetlands that relies on open-access EO data and does not require costly, independent training data. It is an important step towards the effective conservation and management of PPR wetlands, providing an efficient method for baseline and ongoing mapping in these dynamic environments.

Funder

Alberta Environment and Parks, Government of Alberta

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3