The West Kunlun Glacier Anomaly and Its Response to Climate Forcing during 2002–2020

Author:

Luo JianweiORCID,Ke Chang-QingORCID,Seehaus ThorstenORCID

Abstract

Research into glacial mass change in West Kunlun (WK) has been sufficient, but most of the existing studies were based on geodetic methods, which are not suitable for specific health state analyses of each glacier. In this paper, we utilize Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery, applying the continuity equation to obtain altitudinal specific mass balance (SMB) for 615 glaciers (>2 km2) during 2002–2011, 2011–2020, and 2002–2020 to research glacial health and its response to climatic forcing. The results show dissimilar glacier SMB patterns between 2002–2011 (0.10 ± 0.14 m w.e. a−1), 2011–2020 (–0.12 ± 0.14 m w.e. a−1) and 2002–2020 (−0.01 ± 0.07 m w.e. a−1). Additionally, the glacier equilibrium line altitude (ELA) in WK was 5788 m, 5744 m, and 5786 m, respectively, and the corresponding accumulation area ratios (AARs) were 0.59, 0.62, and 0.58, during 2002–2011, 2011–2020, and 2002–2020, respectively. Regarding glacier response, compared with the ordinary-least-square (OLS) model, the artificial neural network (ANN) model revealed a respectively less and more sensitive glacier SMB response to extreme negative and positive summer skin temperatures. In addition, the ANN model indicated that the glacier ELA was less sensitive when the integrated water vapor transport (IVT) change exceeded 0.7 kg m−1s−1. Moreover, compared with IVT (−121.57 m/kg m−1s−1), glacier ELA shifts were chiefly dominated by summer skin temperature (+154.66 m/℃) in the last two decades. From 2002–2011 and 2011–2020, glacier SMB was more susceptible to summer skin temperature (−0.38 m w.e./℃ and −0.16 m w.e./℃, respectively), while during 2002–2020, it was more influenced by IVT (0.45 m w.e./kg m−1s−1). In contrast with eastern WK, glaciers in western WK were healthier, although mitigation measures are still needed to safeguard glacier health and prevent possible natural hazards in this region. Finally, we believe that the inconsistent change between glacier SMB and ELAs from 2002–2020 was connected with ice rheology and that the combined effects of skin temperature and IVT can explain the WK glacier anomaly.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3