Abstract
In the synthetic aperture radar (SAR) ship image, the target size is small and dense, the background is complex and changeable, the ship target is difficult to distinguish from the surrounding background, and there are many ship-like targets in the image. This makes it difficult for deep-learning-based target detection algorithms to obtain effective feature information, resulting in missed and false detection. The effective expression of the feature information of the target to be detected is the key to the target detection algorithm. How to improve the clear expression of image feature information in the network has always been a difficult point. Aiming at the above problems, this paper proposes a new target detection algorithm, the feature information efficient representation network (FIERNet). The algorithm can extract better feature details, enhance network feature fusion and information expression, and improve model detection capabilities. First, the convolution transformer feature extraction (CTFE) module is proposed, and a convolution transformer feature extraction network (CTFENet) is built with this module as a feature extraction block. The network enables the model to obtain more accurate and comprehensive feature information, weakens the interference of invalid information, and improves the overall performance of the network. Second, a new effective feature information fusion (EFIF) module is proposed to enhance the transfer and fusion of the main information of feature maps. Finally, a new frame-decoding formula is proposed to further improve the coincidence between the predicted frame and the target frame and obtain more accurate picture information. Experiments show that the method achieves 94.14% and 92.01% mean precision (mAP) on SSDD and SAR-ship datasets, and it works well on large-scale SAR ship images. In addition, FIERNet greatly reduces the occurrence of missed detection and false detection in SAR ship detection. Compared to other state-of-the-art object detection algorithms, FIERNet outperforms them on various performance metrics on SAR images.
Funder
EEG recognition and service robot control based on structure optimization deep network in the background of high noise
Subject
General Earth and Planetary Sciences
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献