Abstract
The North American Derecho of 29–30 June 2012 exhibits many classic progressive and serial derecho features. It remains one of the highest-impact derecho-producing convective systems (DCS) over CONUS since 2000. This research effort enhances the understanding of the science of operational forecasting of severe windstorms through examples of employing new satellite and ground-based microwave and vertical wind profile data. During the track of the derecho from the upper Midwestern U.S. through the Mid-Atlantic region on 29 June 2012, clear signatures associated with a severe MCS were apparent in polar-orbiting satellite imagery, especially from the EPS METOP-A Microwave Humidity Sounder (MHS), Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager Sounder (SSMIS), and NASA TERRA Moderate Resolution Imaging Spectroradiometer (MODIS). In addition, morning (descending node) and the evening (ascending node) METOP-A Infrared Atmospheric Sounding Interferometer (IASI) soundings are compared to soundings from surface-based Radiometrics Corporation MP-3000 series microwave radiometer profilers (MWRPs) along the track of the derecho system. The co-located IASI and MWRP soundings revealed a pre-convective environment that indicated a favorable volatile tropospheric profile for severe downburst wind generation. An important outcome of this study will be to formulate a functional relationship between satellite-derived parameters and signatures, and severe convective wind occurrence. Furthermore, a comprehensive approach to observational data analysis involves both surface- and satellite-based instrumentation. Because this approach utilizes operational products available to weather service forecasters, it can feasibly be used for monitoring and forecasting local-scale downburst occurrence within derecho systems, as well as larger-scale convective wind intensity associated with the entire DCS.
Funder
National Oceanic and Atmospheric Administration–Cooperative Science Center for Atmospheric Sciences and Meteorology
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献