Tool Wear Prediction Based on Artificial Neural Network during Aluminum Matrix Composite Milling

Author:

Wiciak-Pikuła Martyna,Felusiak-Czyryca AgataORCID,Twardowski PawełORCID

Abstract

This article deals with the phenomenon of tool wear prediction in face milling of aluminum matrix composite materials (AMC), class as hard-to-cut materials. Artificial neural networks (ANN) are one of the tools used to predict tool wear or surface roughness in machining. Model development is applicable when regression models do not give satisfactory results. Because of their mechanical properties based on SiC or Al2O3 reinforcement, AMCs are applied in the automotive and aerospace industry. Due to these materials’ abrasive nature, a three-edged end mill with diamond coating was selected to carry out milling tests. In this work, multilayer perceptron (MLP) models were used to predict the tool flank wear VBB and tool corner wear VBC during milling of AMC with 10% SiC content. The signals of vibration acceleration and cutting forces were selected as input to the network, and the tests were carried out with three cutting speeds. Based on the analysis of the developed models, the models with the best efficiency were selected, and the quality of wear prediction was assessed. The main criterion for evaluating the quality of the developed models was the mean square error (MSE) in order to compare measured and predicted value of tool wear.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3