Interruption Audio & Transcript: Derived from Group Affect and Performance Dataset

Author:

Doyle Daniel1,Şerban Ovidiu12ORCID

Affiliation:

1. Department of Computing, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

2. Data Science Institute, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Abstract

Despite the widespread development and use of chatbots, there is a lack of audio-based interruption datasets. This study provides a dataset of 200 manually annotated interruptions from a broader set of 355 data points of overlapping utterances. The dataset is derived from the Group Affect and Performance dataset managed by the University of the Fraser Valley, Canada. It includes both audio files and transcripts, allowing for multi-modal analysis. Given the extensive literature and the varied definitions of interruptions, it was necessary to establish precise definitions. The study aims to provide a comprehensive dataset for researchers to build and improve interruption prediction models. The findings demonstrate that classification models can generalize well to identify interruptions based on this dataset’s audio. This opens up research avenues with respect to interruption-related topics, ranging from multi-modal interruption classification using text and audio modalities to the analysis of group dynamics.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3