Abstract
A side skirt is a planar rooted tree T, T≠P2, where the root of T is a vertex of degree at least two, and all other vertices except the leaves are of degree at least three. A reduced Halin graph or a skirted graph is a plane graph G=T∪P, where T is a side skirt, and P is a path connecting the leaves of T in the order determined by the embedding of T. The structure of reduced Halin or skirted graphs contains both symmetry and asymmetry. For n≥2 and Pn=v1v2v3⋯vn as a path of length n−1, we call the Cartesian product of a graph G and a path Pn, the n-generalized prism over a graph G. We have known that the n-generalized prism over a skirted graph is Hamiltonian. To support the Bondy’s metaconjecture from 1971, we show that the n-generalized prism over a skirted graph is pancyclic.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献