From Memristor-Modeled Jerk System to the Nonlinear Systems with Memristor

Author:

Wu XianmingORCID,He ShaoboORCID,Tan WeijieORCID,Wang Huihai

Abstract

Based on the proposed generalized memristor, a new jerk system is proposed. The complex dynamics of the system are investigated by means of bifurcation diagrams, Lyapunov exponents, and MSampEn, and rich dynamics are observed. Moreover, the circuits of the generalized memristor and the jerk system are physically implemented in the hardware level. The experimental results show that the memristor circuit can generate “8”-shaped pinched hysteresis loops, and the observed attractors match well with the numerical simulations results. In this paper, we summarize nonlinear systems with memristors in the references. It indicates that there are two symmetry methods to find a memristor model in nonlinear systems. However, some of them cannot be realized using the memristor devices, although a memristor model can be found. For example, the famous Lorenz system contains a memristor function, but it cannot be realized using the memristor device. The principles regarding whether nonlinear systems with a memristor function can be realized using a memristor device are discussed.

Funder

Natural Science Foundation of China

the Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3