Abstract
For the application of parallel robots in the grinding industry, a parallel robot equipped with a constant force actuator that produces a constant force for grinding is designed. To study the characteristics of the parallel robot’s spatial positions and poses, the inverse solutions of the moving platform’s spatial positions and poses as well as the workspace where objects were ground were established by using DH parameters and geometric methods. The experimental results showed that the workspace where objects were ground was a cylinder with a cross section similar to a symmetric circular sector. To analyze the characteristics of the forces produced by the parallel robotic system, the dynamics equation was established via the Newton–Euler method to verify the rationality of the force decoupling design. Theoretical calculation combined with simulation and experimental analyses confirmed the viability of the theoretical analyses which lay a theoretical foundation for the design, manufacture and control of the parallel robotic system proposed in this paper.
Funder
National Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献