Numerical Validation of a Boost Converter Controlled by a Quasi-Sliding Mode Control Technique with Bifurcation Diagrams

Author:

Trujillo Simeón Casanova,Candelo-Becerra John E.ORCID,Hoyos Fredy E.ORCID

Abstract

A boost converter is an electronic circuit that generates a higher voltage in the output than in the input. The most common method to regulate the DC/DC converter is pulse-width modulation (PWM), and some techniques such as sliding mode control help perform a switching frequency to determine the duty cycle. However, some instabilities at different operating points have been detected with the controllers that have not yet been studied. Therefore, this paper presents a numerical validation of the boost converter with bifurcation diagrams. The pulse-width modulation is controlled by using a quasi-sliding mode control technique, such as the zero average dynamics, because it allows for the reduction of some phenomena such as chattering, ripple, and distortions. The results show that N−T periodic orbits are detected with this technique from an initial operating point and they present a qualitative symmetry in both voltage and current variables. This technique is helpful to study a whole range of instability problems resulting from the different power converters and the controllers.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference28 articles.

1. High-Efficiency High Step-Up DC–DC Converter With Dual Coupled Inductors for Grid-Connected Photovoltaic Systems

2. Digital Control in Power Electronics;Buso,2015

3. Quasi-sliding control based on pulse width modulation, zero averaged dynamics and the L2 norm;Fossas,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3