Analytical Model of Heating an Isotropic Half-Space by a Moving Laser Source with a Gaussian Distribution

Author:

Orekhov AlexanderORCID,Rabinskiy LevORCID,Fedotenkov GregoryORCID

Abstract

This study presents the solution of the transient spatial problem of the impact of a moving source of heat flux induced by laser radiation on the surface of a half-space using the superposition principle and the method of transient functions. The solution is based on the Green’s function method, according to which the influence function of a surface-concentrated heat source is found at the first stage. The influence function has axial symmetry and the problem of finding the influence function is axisymmetric. To find the Green’s function, Laplace and Fourier integral transforms are used. The novelty of the obtained analytical solution is that the heat transfer at the free surface of the half-space is taken into account. The Green’s function that was obtained is used to construct an analytical solution to the moving heat-source problem in the integral form. The kernel of the advising integral operator is the constructed Green’s function. The Gaussian distribution is used to calculate integrals on spatial variables analytically. Gaussian law models the distribution of heat flux in the laser beam. As a result, the corresponding integrals on the spatial variables can be calculated analytically. A convenient formula that allows one to study the non-stationary temperature distribution when the heat source moves along arbitrary trajectories is obtained. A numerical, analytical algorithm has been developed and implemented that allows one to determine temperature distribution both on the surface and on the depth of a half-space. For verification purposes, the results were compared with the solution obtained using FEM.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3