Abstract
We calculated the shear viscosity of hot and dense nuclear matter produced in a symmetric system of central gold–gold collisions at energies of BES RHIC, FAIR and NICA. For calculations of the collisions, the transport model UrQMD was employed. The shear viscosity was obtained within the Green–Kubo formalism. The hadron resonance gas model was used to determine temperature and chemical potentials of baryon charge and strangeness out of microscopic model calculations. In contrast to our previous works, we determined the partial viscosity of the main hadron species, such as nucleons, pions, kaons and Lambdas, via the nucleon–nucleon, pion–pion and so forth, correlators. A decrease in the beam energy from Elab=40 to 10 AGeV leads a to rise in baryon shear viscosity accompanied by a drop in the shear viscosity of mesons. The ratio of total shear viscosity to entropy density also decreases.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)