Abstract
The family of logistic type distributions has been widely studied and applied in the literature. However, certain estimation problems exist in some members of this family. Particularly, the three-parameter type I generalized logistic distribution presents these problems, where the parameter space must be restricted for the existence of their maximum likelihood estimators. In this paper, motivated by the complexities that arise in the inference under the likelihood approach utilizing this distribution, we propose a Bayesian approach to solve these problems. A simulation study is carried out to assess the performance of some posterior distributional characteristics, such as the mean, using Monte Carlo Markov chain methods. To illustrate the potentiality of the Bayesian estimation in the three-parameter type I generalized logistic distribution, we apply the proposed method to real-world data related to the copper metallurgical engineering area.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference50 articles.
1. Continuous Univariate Distributions;Johnson,1994
2. A Primer on Statistical Distributions;Balakrishnan,2004
3. Handbook of the Logistic Distribution;Balakrishnan,1991
4. Generalized Weibull distributions;Lai,2014
5. A new derivation of the logistic distribution
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献