Abstract
In this research, a proportional integral derivative regulator, a first-order sliding-mode regulator, and a second-order sliding-mode regulator are compared, for the regulation of two different types of mathematical model. A first-order sliding-mode regulator is a method where a sign-mapping checks that the error decays to zero after a convergence time; it has the problem of chattering in the output. A second-order sliding-mode regulator is a smooth method to counteract the chattering effect where the integral of the sign-mapping is used. A second-order sliding-mode regulator is presented as a new class of algorithm where the trajectory is asymptotic and stable; it is shown to greatly improve the convergence time in comparison with other regulators considered. Simulation and experimental results are described in which an electric oven is considered as a stable linear mathematical model, and an inverted pendulum is considered as an asymmetrical unstable non-linear mathematical model.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献