Systematic Review on Identification and Prediction of Deep Learning-Based Cyber Security Technology and Convergence Fields

Author:

Hwang Seung-Yeon,Shin Dong-JinORCID,Kim Jeong-JoonORCID

Abstract

Recently, as core technologies leading the fourth industrial revolution, such as the Internet of Things (IoT), 5G, the cloud, and big data, have promoted smart convergence across national socio-economic infrastructures, cyber systems are expanding and becoming complex, and they are not effective in responding to cyber safety risks and threats using security technology solutions limited to a single system. Therefore, we developed cyber security technology that combines machine learning and AI technology to solve complex problems related to cyber safety. In this regard, this study aims to identify technology development trends to prevent the risks and threats of various cyber systems by monitoring major cyber security convergence fields and technologies through the symmetrical thesis and patent analysis. Because thesis information can explain the superiority of technology and patent information can explain the usefulness of a technology, they can be effectively used for analyzing and predicting technology development trends. Therefore, in this study, latent Dirichlet allocation is applied to extract text-document-based technical topics for the symmetrical thesis and patent information to identify security convergence fields and technologies for cyber safety. In addition, it elucidates cyber security convergence fields and technology trends by applying a dynamic topic model and long short-term memory, which are useful for analyzing technological changes and predicting trends. Based on these results, cyber security administrators, system operators, and developers can effectively identify and respond to trends in related technologies to reduce threats, and companies and experts developing cyber security solutions can present a new security approach.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Roadmap Toward Prospects for IoT Enabled 5G Networks;2023 7th International Conference on Computing Methodologies and Communication (ICCMC);2023-02-23

2. SPM: Sparse Persistent Memory Attention-Based Model for Network Traffic Prediction;Symmetry;2022-11-04

3. SPM: Sparse Persistent Memory Attention-Based Model for Network Traffic Prediction;SYMMETRY-BASEL;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3