Dual-Energy Processing of X-ray Images of Beryl in Muscovite Obtained Using Pulsed X-ray Sources

Author:

Komarskiy Alexander1,Korzhenevskiy Sergey1,Ponomarev Andrey1,Chepusov Alexander1

Affiliation:

1. Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg 620016, Russia

Abstract

This paper presents the development of a method for dual-energy processing of X-ray images using pulsed X-ray sources for the contrast detection of beryl in muscovite mica in 2D X-ray and CT images. These substances have similar chemical properties and are difficult to differentiate when one is against the background of the other using methods based on X-ray absorption. In the experiments, we used three pulsed X-ray sources with different maximum voltages. We performed modeling of the emission spectra and selection of the necessary energy bands due to X-ray absorbing filters: a positive effect was shown for dual-energy image processing when the function of converting X-ray radiation into a signal using the VIVIX-V 2323D detector was taken into account. As a result, a pulsed X-ray source with the pulse voltage of 330 kV was chosen for the contrast detection of beryl, with the content of 5–7% against the background of muscovite and the thickness up to 70 mm. Using this source and the developed mathematical algorithms, it is possible to obtain a band of low-energy radiation at the level of 70–80 keV, as well as high-energy radiation in the range of 180 keV. Methods based on the X-ray absorption can become both additional and independent methods for studying and monitoring membranes; these objects range from tens of nanometers to several micrometers in size.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3