Abstract
The adaptive coordination of trust services can provide highly dependable and personalized solutions for industrial requirements in the service-oriented industrial internet of things (IIoT) architecture to achieve efficient utilization of service resources. Although great progress has been made, trust service coordination still faces challenging problems such as trustless industry service, poor coordination, and quality of service (QoS) personalized demand. In this paper, we propose a QoS-driven and adaptive trust service coordination method to implement Pareto-efficient allocation of limited industrial service resources in the background of the IIoT. First, we established a Pareto-effective and adaptive industrial IoT trust service coordination model and introduced a blockchain-based adaptive trust evaluation mechanism to achieve trust evaluation of industrial services. Then, taking advantage of a large and complex search space for solution efficiency, we introduced and compared multi-objective gray-wolf algorithms with the particle swarm optimization (PSO) and dragonfly algorithms. The experimental results showed that by judging and blacklisting malicious raters quickly and accurately, our model can efficiently realize self-adaptive, personalized, and intelligent trust service coordination under the given constraints, improving not only the response time, but also the success rate in coordination.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献