Alignment Method for Linear-Scale Projection Lithography Based on CCD Image Analysis

Author:

Ren Dongxu,Zhao Zexiang,Xi Jianpu,Li Bin,Li Zhengfeng,Zhao Huiying,Cui Lujun,Xu Hang

Abstract

This paper presents a method to improve the alignment accuracy of a mask in linear scale projection lithography, in which the adjacent pixel gray square variance method is applied to a charge-coupled device (CCD) image to obtain the best position of the focal length of the motherboard and then realize the alignment of the focal plane. Two image positions in the focal plane of the CCD are compared with the traits overlap according to the image splicing principle, and four typical errors are corrected on the basis of the total grating errors. Simultaneously, the rotation error of the mask is used to summarize the grayscale variation function of the CCD image. Threshold functions are employed to express the factors including the wave crests of the amplitude, period error, and phase error, which govern the rotation accuracy and weight alignment accuracy expression of the established four error factors. Finally, in the experiment, the slope of the mask is corrected and adjusted to the same direction as the slide plate with the assistance of a dual-frequency laser interferometer. The effect of the alignment error on the lithography accuracy is discussed and verified in the static case, and it is found that the CCD maximum resolution pixel is 0.1 μm and accuracy of the scale is 0.79 μm in only a 200-mm-measurement range.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3