eWOM Information Richness and Online User Review Behavior: Evidence from TripAdvisor

Author:

Liu Xueyu1ORCID,Lin Jie1,Jiang Xiaoyan1,Chang Tingzhen1,Lin Haowen2

Affiliation:

1. School of Economics and Management, Tongji University, Shanghai 200092, China

2. Computer Science Department, University of Southern California, Los Angeles, CA 90007, USA

Abstract

The growing number of online users commenting on review platforms has fueled the development of electronic word–of–mouth (eWOM). At the same time, merchants have improved their requirements for the length and frequency of online reviews. However, few studies have examined the updating mechanism of online reviews length and frequency from the perspective of businesses. This study explores the relationship between online commenting platform users and eWOM and examines how eWOM information richness affects online user review behavior. We used media richness theory (MRT) to quantify the information richness of eWOM content (linguistic, textual, and photographical) to build an empirical framework. For the research data, we used advanced big data analytics to retrieve and analyze TripAdvisor data on restaurant services in nine major tourist destinations, the United States, Mexico, and mainland Europe (including UK, Spain, Netherlands, etc.), over a long period of time. Based on >10 million eWOM, this study used multiple regression to examine the impact of eWOM information richness on online user review behavior, considering the moderating effect of information ambiguity. Our research results show that content information richness positively affects online user review behavior, increasing their frequency and length. Information ambiguity play a moderating role that strengthens this relationship. This supports our theoretical hypothesis. Finally, for greater applicability and reliability, we conducted a comparative study on the degree of differences in the relationship between eWOM and users based on different cultural backgrounds across countries.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3