Abstract
The objective of the study was to estimate the diameter at different stem heights and the tree volume of the Nothofagus obliqua (Mirb.) Oerst., Nothofagus alpine (Poepp. et Endl.) Oerst. and Nothofagus dombeyi (Mirb.) Oerst. trees using artificial neural networks (ANNs) and comparing the results with estimates obtained from six traditional taper functions. A total of 1380 trees were used. The ANN trained to estimate the stem diameter with the best performance generated RMSE values in the training phase of 7.5%, and 7.7% in the validation phase. Regarding taper functions, Kozak’s model generated better RMSE indicators, but performed not as well as that generated by the ANN. The ANN estimation of the total volume was carried out in two phases. The first used the diameter estimation to determine the volume at one-centimeter intervals along the stem (one-phase ANN), and the second used the estimation of the one-phase ANN as an additional variable in an ANN that directly estimated the tree cumulative volume (two-phase ANN). The two-phase ANN method generated the best performance for estimating the cumulative volume in relation to one-phase ANN and the Kozak taper function, generating RMSE values for N. obliqua, N. alpina and N. dombeyi of 9.7%, 8.9% and 8.8%, respectively.
Reference48 articles.
1. Modeling of stem form and volume through machine learning;Schikowski;Anais da Academia Brasileira de Ciências,2018
2. A variable-exponent taper equation;Kozak;Can. J. For. Res.,1988
3. Socha, J., Netzel, P., and Cywicka, D. (2020). Stem taper approximation by artificial neural network and a regression set models. Forests, 11.
4. Amarioarei, A., Paun, M., and Strimbu, B. (2020). Development of nonlinear parsimonious forest models using efficient expansion of the taylor series: Applications to site productivity and taper. Forests, 11.
5. My last words on taper equations;Kozak;For. Chron.,2004
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献