A Visual Analytics Web Platform for Detecting High Wind Energy Potential in Urban Environments by Employing OGC Standards

Author:

Koukofikis AthanasiosORCID,Coors VolkerORCID

Abstract

Moving into the third decade of the 21st century, smart cities are becoming a vital concept of advancement of the quality of life. Without any doubt, cities today can generate data of high velocity which can be used in plethora of applications. The wind flow inside a city is an area of several studies which span from pedestrian comfort and natural ventilation to wind energy yield. We propose a Visual Analytics platform based on a server-client web architecture capable of identifying areas with high wind energy potential by employing 3D technologies and Open Geospatial Consortium (OGC) standards. The assessment of a whole city or sub-regions will be supported by integrating Computational Fluid Dynamics (CFD) outcomes with historical wind sensor readings. The results, in 3D space, of such analysis could be used by a wide audience, including city planners and citizens, for locating installation points of small-scale horizontal or vertical axis wind turbines in an urban area. A case study in an urban quarter of Stuttgart is used to evaluate the interactiveness of the proposed workflow. The results show an adequate performance, although there is a lot of room for improvement in future work.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference38 articles.

1. Mastering the Information Age: Solving Problems with Visual Analytics,2010

2. Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations

3. CityGML – Interoperable semantic 3D city models

4. The Kalasatama Digital Twins Project;Suomisto,2019

5. Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment: COST Action 732 Quality Assurance and Improvement of Microscale Meteorological Models;Franke,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3