Nanjing’s Intracity Tourism Flow Network Using Cellular Signaling Data: A Comparative Analysis of Residents and Non-Local Tourists

Author:

Wang LingjinORCID,Wu Xiao,He Yan

Abstract

With the rapid development of transportation and modern communication technology, “tourism flow” plays an important role in shaping tourism’s spatial structure. In order to explore the impact of an urban tourism flow network on tourism’s spatial structure, this study summarizes the structural characteristics of the tourism flow networks of 43 scenic spots in Nanjing from three aspects—tourism flow network connection, node centrality, and communities—using cellular signaling data and the social network analysis method. A comparative analysis revealed the tourism flow network structures of residents and non-local tourists. Our findings indicated four points. Firstly, the overall network connectivity was relatively good. Core city nodes displayed high spatial concentration and connection strength. However, suburban nodes delivered poor performance. Secondly, popular nodes were intimately connected, although there were no “bridging” nodes. Lesser-known nodes were marginalized, resulting in severe node polarization. Thirdly, regarding the network community structure, the spatial boundary between communities was relatively clear; the communities within the core city were more closely connected, with some parts encompassing suburban nodes. Most suburban communities were attached to the communities in the core area, with individual nodes existing independently. Fourthly, the primary difference in the tourism flow network structures between residents and non-local tourists was that the nodes for residents manifested a more balanced connection strength and node centrality. Core communities encompassed more nodes with more extensive coverage. Conversely, the nodes for non-local tourists showed wide discrepancies in connection strength and node centrality. Furthermore, core communities were small in scale with clear boundaries.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3