Machine Learning Based Vehicle to Grid Strategy for Improving the Energy Performance of Public Buildings

Author:

Scott Connor,Ahsan MominulORCID,Albarbar AlhusseinORCID

Abstract

Carbon neutral buildings are dependent on effective energy management systems and harvesting energy from unpredictable renewable sources. One strategy is to utilise the capacity from electric vehicles, while renewables are not available according to demand. Vehicle to grid (V2G) technology can only be expanded if there is funding and realisation that it works, so investment must be in place first, with charging stations and with the electric vehicles to begin with. The installer of the charging stations will achieve the financial benefit or have an incentive and vice versa for the owners of the electric vehicles. The paper presents an effective V2G strategy that was developed and implemented for an operational university campus. A machine learning algorithm has also been derived to predict energy consumption and energy costs for the investigated building. The accuracy of the developed algorithm in predicting energy consumption was found to be between 94% and 96%, with an average of less than 5% error in costs predictions. The achieved results show that energy consumption savings are in the range of 35%, with the potentials to achieve about 65% if the strategy was applied at all times. This has demonstrated the effectiveness of the machine learning algorithm in carbon print reductions.

Funder

Professor Alhussein Albarbar

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference50 articles.

1. How the UK Is Progressinghttps://www.theccc.org.uk/

2. Embedding power system’s reliability within a long-term Energy System Optimization Model: Linking high renewable energy integration and future grid stability for France by 2050

3. Peak Power Plants Explainedhttps://squireenergy.co.uk/peak-power-plants-explained/

4. Electric Vehicle and Alternately Fuelled Vehicle Registrationshttps://www.smmt.co.uk/vehicle-data/evs-and-afvs-registrations/

5. Electric Vehicles and Infrastructure;Hirst,2020

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3