A New Perspective for Climate Change Mitigation—Introducing Carbon-Negative Hydrogen Production from Biomass with Carbon Capture and Storage (HyBECCS)

Author:

Full JohannesORCID,Merseburg Steffen,Miehe RobertORCID,Sauer Alexander

Abstract

The greatest lever for advancing climate adaptation and mitigation is the defossilization of energy systems. A key opportunity to replace fossil fuels across sectors is the use of renewable hydrogen. In this context, the main political and social push is currently on climate neutral hydrogen (H2) production through electrolysis using renewable electricity. Another climate neutral possibility that has recently gained importance is biohydrogen production from biogenic residual and waste materials. This paper introduces for the first time a novel concept for the production of hydrogen with net negative emissions. The derived concept combines biohydrogen production using biotechnological or thermochemical processes with carbon dioxide (CO2) capture and storage. Various process combinations referred to this basic approach are defined as HyBECCS (Hydrogen Bioenergy with Carbon Capture and Storage) and described in this paper. The technical principles and resulting advantages of the novel concept are systematically derived and compared with other Negative Emission Technologies (NET). These include the high concentration and purity of the CO2 to be captured compared to Direct Air Carbon Capture (DAC) and Post-combustion Carbon Capture (PCC) as well as the emission-free use of hydrogen resulting in a higher possible CO2 capture rate compared to hydrocarbon-based biofuels generated with Bioenergy with Carbon Capture and Storage (BECCS) technologies. Further, the role of carbon-negative hydrogen in future energy systems is analyzed, taking into account key societal and technological drivers against the background of climate adaptation and mitigation. For this purpose, taking the example of the Federal Republic of Germany, the ecological impacts are estimated, and an economic assessment is made. For the production and use of carbon-negative hydrogen, a saving potential of 8.49–17.06 MtCO2,eq/a is estimated for the year 2030 in Germany. The production costs for carbon-negative hydrogen would have to be below 4.30 € per kg in a worst-case scenario and below 10.44 € in a best-case scenario in order to be competitive in Germany, taking into account hydrogen market forecasts.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference132 articles.

1. https://unfccc.int/sites/default/files/english_paris_agreement.pdf

2. The European Green Deal,2019

3. Klimaschutzprogramm 2030 der Bundesregierung zur Umsetzung des Klimaschutzplans 2050 https://www.bundesregierung.de/breg-de/themen/klimaschutz/massnahmenprogramm-klima-1679498

4. Fact Sheet Klimaschutzgesetz https://www.bmu.de/gesetz/bundes-klimaschutzgesetz/

5. Climate Watch Historical GHG Emissions https://www.climatewatchdata.org/ghg-emissions

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3