Electrochemical Evaluation of Nickel Oxide Addition toward Lanthanum Strontium Cobalt Ferrite Cathode for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCS)

Author:

Mohd Abd Fatah Ahmad FuzamyORCID,Rosli Ahmad Zaki,Mohamad Ahmad AzminORCID,Muchtar AndanastutiORCID,S.A. Muhammed AliORCID,Hamid Noorashrina A.

Abstract

A mixture of lanthanum strontium cobalt ferrite (LSCF) and nickel oxide (NiO) makes for a desirable cathode material for an IT-SOFC due to its excellent oxygen reduction capability. This study investigates the effect of NiO addition into LSCF cathode on its physical and electrochemical properties. To optimise the amount of NiO addition, both electrochemical impedance spectra and bode phase were used to examine various weight ratios of nickel oxide and LSCF cathode. Brunauer-Emmett-Teller (BET) and thermal analyses validated the electrochemical observation that the LSCF:NiO ratio yields sensible oxygen reduction reaction and stoichiometric findings. Initial characterisation, comprising of phase and bonding analyses, indicated that LSCF-NiO was successfully synthesised at 800 °C using an improved modified sol gel technique. The addition of 5% nickel oxide to LSCF results in the lowest area specific resistance (ASR) value overall. The Bode phase implies that the addition of 5% nickel oxide to LSCF reduces the impedance at low frequencies by 64.28 percent, indicating that a greater oxygen reduction process happened at the cathode. After the addition of 5 wt% NiO, a single LSCF-NiO cell may function at temperatures as low as 650 °C and the LSCF cathode power density is increased by 25.35%. The surface morphology of the LSCF-NiO cathode reveals that the average particle size is less than 100 nm, and mapping analysis demonstrated a homogenous NiO distribution over the cathode layer. Consequently, the synthesis of LSCF-NiO at intermediate temperatures (800–600 °C) revealed outstanding chemical compatibility, bonding characteristics, and electrochemical performance.

Funder

Ministry of Science, Technology and Innovation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3