Blockchain-Based Gas Auctioning Coupled with a Novel Economic Dispatch Formulation for Gas-Deficient Thermal Plants

Author:

Damisa UyikumheORCID,Oluseyi Peter OlabisiORCID,Nwulu Nnamdi IkechiORCID

Abstract

Inadequate gas supply is partly responsible for the energy shortfall experienced in some energy-poor nations. Favorable market conditions would boost investment in the gas supply sector; hence, we propose a blockchain-based fair, transparent, and secure gas trading scheme that facilitates peer-to-peer trading of gas. The scheme is developed using an Ethereum-based smart contract that receives offers from gas suppliers and bid(s) from the thermal plant operator. Giving priority to the cheapest offers, the smart contract determines the winning suppliers. This paper also proposes an economic dispatch model for gas-deficient plants. Conventional economic dispatch seeks to satisfy electric load demand whilst minimizing the total gas cost of generating units. Implicit in its formulation is the assumption that gas supply to generating units is sufficient to satisfy available demand. In energy poor nations, this is hardly the case as there is often inadequate gas supply and conventional economic dispatch is of little practical value. The proposed economic dispatch model’s objective function maximizes the quantity of available gas and determines the optimal power output of each generating unit. The mathematical formulation is verified using data from the Egbin thermal station which is the largest thermal station in Nigeria and is solved using the General Algebraic Modeling System (GAMS). Obtained results indicate the viability of the novel approach as it results in a net power gain of 35 MW. On the other hand, the smart contract proved effective in accurately selecting winning suppliers and making payment.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3