Development of a Simple Experimental Setup for the Study of the Formation of Dry Bands on Composite Insulators

Author:

Andoh Marc-AlainORCID,Gbah KoneORCID,Volat Christophe

Abstract

This paper introduces a new geometry for the study of dry band formation. Firstly, a thermoelectric simulation of a 69 kV uniformly polluted composite insulator was performed. The results obtained show that thermal stress is greater at the rod surface where current density is maximum. In order to experimentally reproduce the constriction of current density lines on the insulator rod surface, which is the cause of dry band formation, the development of a new simple geometric setup, which was then tested experimentally, was proposed. For this purpose, an ESDD value corresponding to a high level of pollution was used for each polluted sample, and the samples were placed in a climate chamber at constant 90% relative humidity and a constant ambient temperature of 20 °C. Low-voltage tests permitted the determination of the wetting duration, which corresponds to the maximum surface conductance of the polluted layer. The values obtained agree with the 10–40 min duration recommended in IEC 60507. Moreover, the tests performed at a higher voltage demonstrated the efficiency of the proposed setup to simulate the complex process of dry band formation in a reproducible way in terms of leakage current and temperature behavior. The proposed setup is a new and simple method that can be easily used by the electrical industry to develop new material for the next generation of overhead line composite insulators without requiring costly HV equipment.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference27 articles.

1. Computer package for selecting high voltage insulators for different contamination conditions;Beroual;IEEE Trans. Dielectr. Electr. Insul.,2013

2. Contournement Des Isolateurs Pollués;Bessedik;Ph.D. Thesis,2015

3. Electrical Circuit Flashover Model of Polluted Insulators under AC Voltage Based on the Arc Root Voltage Gradient Criterion

4. Experimental modeling of the flashover of polluted insulator in the presence of a metal plate using RSM technique;Bouhmama;J. Power Technol.,2018

5. Investigating flashover behaviour of silicone rubber insulators under contaminated conditions;Nekahi;Proceedings of the Electrical Insulation and Dielectric Phenomena (CEIDP),2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3