A Novel Coordination Mechanism for Connected and Automated Vehicles in the Multi-Intersection Road Network

Author:

Zhang Yuanhao,Zhao JiabaoORCID

Abstract

In recent years, connected automated vehicles (CAVs) have attracted much attention, and the coordination strategy of CAVs in isolated intersections has been widely discussed. However, these algorithms for isolated intersections cannot be directly applied in a multi-intersection road network (MiRN). The coordination strategy in the MiRN requires further investigation. This paper proposes a two-tier strategy for CAV coordination in the MiRN. First, we analyze the coordination problem in isolated intersections and formulate it as a mixed-integer programming problem. Then, for the MiRN, we propose a consensus prediction method to estimate the travel time for CAVs with different paths. Finally, a novel coordination approach is given, showing how to determine the optimal path for CAVs. The experimental results demonstrate the efficiency of the proposed strategy under various traffic flow rates. Compared with the fixed signal time assignment method and the actuated signal time assignment method, our method reduces the average travel time by about 74–83% under different flow rates. We also evaluate the impact of parameters on the strategy’s performance and provide some suggestions for setting these parameters.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference47 articles.

1. World Urbanization Prospects: The 2018 Revision Population Division,2019

2. 2021 Urban Mobility Report,2021

3. Smart cities of the future

4. Real-Time Urban Traffic Control in a Connected and Automated Vehicle Environment;Yang;Ph.D. Thesis,2018

5. Intelligent transportation systems for smart cities: a progress review

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3